# Embedded Passives, Go for it !





Ruth Kastner Eli Moshe





# Outline

- Description of a case study: Problem definition
- New technology to the rescue:
  Embedded passive components
- Benefits from new technology
- Design flow
- Summary and conclusions







 Description of a case study: Problem definition

- New technology to the rescue: Embedded passive components
- Benefits from new technology
- Design flow
- Summary and conclusions.



### ...we had to design a board:

Size: 30.7"x 11.4" = 350sq"

100 pins gold edge Connector

Material: FR4, Hi-TG

Industrial components

Termination and P/U Resistors 2300

Controlled Impedance signals 50/1000hm





# Outline

- Description of a case study: Problem definition
- New technology to the rescue: Embedded passive components
- Benefits from new technology
- Design flow
- Summary and conclusions.



Very few PCB manufacturing houses would be able to handle this **size**. If they can, the **cost** would be high.

Most would lack the right tooling and capabilities for manufacturing of the PCB.

Even fewer assembly houses would be able to place a board of this **size** within the stencil, on the pick & place machines, and then through the re-flow oven.

Again, cost would be an issue.



# ADCOINTReview of options and<br/>selection of solution

- The following criteria led to the selection of Embedded resistor technology:
- Availability of:
- Design tools
- PCB layout tools
- PCB manufacturers
- Reliability data
- Assembly houses



An open question remains: How do we construct the Cost model ?



Resistor embedded design rules were studied in a very short time with the help of design guidelines by Ohmega-Ply.

Found two sources on cost models:

**Source 1**: CALCE Cost modeling: University of Maryland. This model is based on Assembly, Materials, Yield, Trimming, Parts procurement Parts handling, Rework





**Cost & Technology** 

# **Source 2**. A model for application-specific analysis of discrete passive components

P. A. Sandborn, B. Etienne, and G. Subramanian, "

Application-Specific Economic Analysis of Integral Passives in Printed Circuit Boards." IEEE Trans. on Electronics Packaging Manufacturing, Vol. 24, No. 3, pp. 203-213, July 2001.



# **Our case study: the board, designed with Embedded resistor technology**

Size: 12.9" x 14.4" =185sq"

PCB Thickness 1.6mm

Material FR4 Hi-TG

Industrial components

**Embedded Resistors 2300** 

Controlled Impedance signals 50/1000hm





### **Comparison of boards**





### **Comparison Chart**

|           | 111       | Standard Technology   | Embedded Technology   |  |  |
|-----------|-----------|-----------------------|-----------------------|--|--|
|           | dimension | 30.7"x 11.4" = 350sq" | 12.9" x 14.4" = 185sq |  |  |
|           |           |                       |                       |  |  |
|           |           |                       |                       |  |  |
| unit size | layout    |                       |                       |  |  |
|           |           |                       |                       |  |  |
|           |           |                       |                       |  |  |
|           |           |                       |                       |  |  |
|           | area      | 100%                  | 52%                   |  |  |
|           |           |                       |                       |  |  |
|           | substrate | 41%                   | 16%                   |  |  |
|           |           |                       |                       |  |  |
| unit cost | BOM       | 17%                   | 22%                   |  |  |
|           |           |                       |                       |  |  |
|           | assembly  | 42%                   | 10%                   |  |  |
|           |           | 100%                  | 48%                   |  |  |
|           |           |                       |                       |  |  |
|           |           |                       |                       |  |  |
|           |           |                       |                       |  |  |



#### We considered Embedded Resistor technology



**Reasons being....** 





The trend towards miniaturization has been with us for quite a while.

A question that arises frequently in this context is as follows:

Can we offer miniaturization in three dimensions rather than the conventional two?

A positive answer to this question is now provided through the embedded passive technology.



### **PCB Evolution**

**Passive components** are known to dominate in many categories.

- World market share: \$700B+ (2004).
- Passives on circuit boards
  - occupy 40%+ of available substrate area,
  - contain about 30% of all solder joints,
  - take about 90% of the total assembly cost.
  - Each IC employs additional 15 40 passive components in a typical design.

 $\Rightarrow$  **Passive components** have an adverse effect on the size, weight, performance and overall cost of PCBs.



# Outline

- Description of a case study: Problem definition
- New technology to the rescue: Embedded passive components
- Benefits from new technology
- Design flow
- Summary and conclusions.



Improved line impedance matching

- Elimination of inductive reactance of SMT devices
- Reduced series inductance
- Shorter signal paths
- Reduced cross-talk, noise and EMI



Impedance of a SMT capacitor (6512B) and a BC test board (A) Figure 12



Benefit: Lower resistor parasitic inductance

### Better functionality $\Rightarrow$ lower inductance

from: 0.9 nHy for a1206 SMT resistor

to: 0.4 nHy for an embedded resistor



- Increased active component density & reduced form factors
- Improved wire-ability due to elimination of via and smt pads
- Reduced board size/ reduced layer count



Sanmina-SCI Corporation



**Benefit: Lower Cost** 

- Elimination of discrete components
- Improved assembly yield
- Assembly on top side rather than on both sides
- Board reduced size/layer
- Reduced purchase cost, management, shipments
- Reduced storage floor area



- Fewer defects per unit (DPU) when BP is used
- Two fewer solder joints per discrete component
- Two fewer vias per discrete component
- Longer MTBF of an assembled board
- Actual values can be derived from DoD-MIL-HDBK-217 or Bellcore FR-NWT-000978



# Outline

- Description of a case study: Problem definition
- New technology to the rescue: Embedded passive components
- Benefits from new technology
- Design flow
- Summary and conclusions.



Consider BP at the Circuit Design phase, preferably earlier

Define material, component technology, select design Kit(s)

Analyze your design You can determine if BP is a viable option and which components should be Embedded

Decide together with your PCB Manufacturer on the choice of the resistive sheet to be used in the design

Sheet resistance  $Rs = 25 \Omega/sq$ 





In the process of schematic design, define naming convention for the BP and run simulation phase





#### Component selection: type, value, tolerance, power rating

|   | 25 | 97 | R1, R2, R5, R6, R9, R10, R13, 10K<br>R14, R17, R18, R19, R20, R21,<br>R22, R23, R24, R25, R27, R28,<br>R29, R30, R31, R32, R33, R34,<br>R35, R36, R37, R38, R45, R46,<br>R47, R48, R49, R50, R51, R52,<br>R53, R54, R55, R56, R57, R58,<br>R59, R60, R77, R78, R79, R80,<br>R81, R82, R83, R84, R85, R86,<br>R87, R88, R89, R90, R91, R92,<br>R113, R114, R115, R116, R117,<br>R118, R119, R120, R121, R122,<br>R123, R124, R125, R126, R127,<br>R128, R142, R144, R146, R148,<br>R161, R162, R163, R164, R165,<br>R166, R167, R168, R169, R170,<br>R171, R172, R173, R174, R175, | br10k_005w_100 | 97 | RN90<br>R1, R2, R5, R6, R9, R10, R13, 10K<br>R14, R17, R18, R19, R20, R21,<br>R22, R23, R24, R25, R27, R28,<br>R29, R30, R31, R32, R33, R34,<br>R35, R36, R37, R38, R45, R46,<br>R47, R48, R49, R50, R51, R52,<br>R53, R54, R55, R56, R57, R58,<br>R59, R60, R77, R78, R79, R80,<br>R81, R82, R83, R84, R85, R86,<br>R87, R88, R89, R90, R91, R92,<br>R113, R114, R115, R116, R117,<br>R118, R119, R120, R121, R122,<br>R123, R124, R125, R126, R127,<br>R128, R142, R144, R146, R148,<br>R161, R162, R163, R164, R165,<br>R166, R167, R168, R169, R170,<br>R171, R172, R173, R174, R175, | r0805 |       |
|---|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
|   | 26 | 8  | R176<br>R3,R4,R7,R8,R11,R12,R15,<br>P16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 r0805        | 8  | R176<br>R3,R4,R7,R8,R11,R12,R15,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0     | r0805 |
|   | 27 | 15 | R93,R94,R95,R153,R154, 330<br>R155,R156,R204,R205,R207,<br>R208,R209,R210,R212,R213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | br330_025w_100 | 15 | R16<br>R93,R94,R95,R153,R154, 330<br>R155,R156,R204,R205,R207,<br>R208.R209.R210.R212.R213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r0805 |       |
|   | 28 | 1  | R96 2.2K r0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 1  | R96 2.2K r0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |
|   | 29 | 4  | R141,R143,R145,R147 1K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | br1k_010w_100  | 4  | R141.R143.R145.R147 1K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r0805 |       |
|   | 30 | 1  | R178 50K r0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 1  | R178 50K r0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |
| 3 | 31 | 1  | R179 680 r0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | ī  | R179 680 r0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |
| - | 32 | 1  | R180 200K r0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | ī  | R180 200K r0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       |
| - | 33 | 1  | R181 500 r0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | ī  | R181 500 r0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |
| - | 34 | 1  | R182 150K r0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 1  | R182 150K r0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       |

#### **Embedded BOM**

#### **Conventional BOM**



Resistive Element

No. of squares = 90 No. corner squares = 18

- Optimize component design: - p/u & p/d values termination values
- Create component library
- Total No. of effective squares = 90 + (18 x 0.56) Generate components Resistance value = 100 squares x 100 ohm/square = 10,000 ohms Figure 3: 10,000 ohms resistor footprints minimize component area and material use





The effective No. of square = 0.56 for current density at right-angle path of corner square

 $\approx 100$  squares

Copper Pads

0.0100



#### Design your stack-up

Verify with your PCB manufacturer: feasibility, material, cost







- Update Stack-up
- BOM preparation for PCB manufacture indicating:
- resistor value
- in what layer
- what tolerance is required





Start Layout placement:

Place main IC and components

Place embedded passives in relevant layers







#### Start Routing:

- Connect embedded resistors
- Leave open plane channels
- Power layer route







GND plane: Direct connection of the embedded resistors to the plane layer





Gerber preparations: Superposition of GND and embedded resistor layers





# Outline

- Description of a case study: Problem definition
- New technology to the rescue: Embedded passive components
- Benefits from new technology
- Design flow
- Summary and conclusions.



## What have we gained?

- Smaller PCB size in production
- **Cheaper Assembly**
- Faster Assembly
- Higher Reliability
- Shorter Signal Traces
- Gained Component storage area
- Reduced purchase costs





### What are the tradeoffs?

# Flexibility to change resistor values





Eliminating passives in assembly: Can resolve critical bottle necks in assembly!

• 200 fewer components in 5M pcs @50k parts/hour: 800+ days less in the assembly line!

 2000 fewer components in 100.000pcs @50k parts/hour: 166+ days less in the assembly line!

.....@ 24h operation!



## **Emerging Standards**

IPC-D37A IPC-D37B IPC-D37C IPC-D37D

IPC-2316 IPC-4811 IPC-4821 Materials. IPC-4902 Embedded Passive Devices Design Task group Embedded Passive Materials Task group Embedded Passive Devices Performance Task group Embedded Passive Devices Test Methods Task group

Design Guide for Embedded Passive Devices Specification for Embedded Passive Resistor Materials. Specification for Embedded Passive Capacitor

Specification for Materials for Embedded Passive





Embedded passives are seen as a key enabling technology in the National Electronics Manufacturing Initiative (NEMI) Roadmap.

The technology developed in this program will translate to a variety of other applications because of the expanded performance, potential for lower system cost, reduced area requirements, and improved reliability.

### **ΔDCOT** I. Conventional resistors



# **ADCOTT** II. With 2000 embedded resistors





### **THANK YOU**

**Questions and queries are welcome** 

Ruth Kastner +972- 9-7417411 – ext. 106 +972- 54-6681414 Ruthk@adcom.co.il