Embedded Thin-Film NiP Resistor Technology Recent Developments in Lead-Free and Microwave Applications

Bruce P Mahler Ohmega Technologies, Inc.

By

IMAPS Integrated/Embedded Passives ATW November 15 - 16, 2007, San Jose, California

NiP Resistor Manufacturing Overview

Thin film **NiP** resistive alloy material is made by electrodepositing of the NiP alloy onto copper foil (RESISTOR-CONDUCTOR MATERIAL) which is then laminated to a dielectric material and subtractively processed to produce planar resistors. Because of its thin film nature, it can be buried within layers without increasing the thickness of the board or occupying any surface space like discrete resistors.

Recommended Copper Type for Various Dielectric Materials

ΡΤ

Hi T_g Epoxy Polyimide Lead-Free Rogers 4003 Ceramic-Filled LCP (Rogers Ultralam 3850)

1R25 with PT COPPER FOIL at 200X

TOCIII

PTFE Rogers Duroid[®] Arlon CLTE

Ohmega/Faradflex[®]

BC24

BC16

Flex

1R25 with TOCIII COPPER FOIL at 200X

DFF

Ohmega/Faradflex [®] BC12

BC8

1R25 with DFF COPPER FOIL at 200X

Application of NiP Resistors Using PT Copper

▲ Pull-up resistors in an avionic application – Polyimide Dielectric

Application of NiP Resistors Using PT Copper

Application of NiP Resistors Using PT Copper

NiP Resistors Embedded in DRAM PCB – FR4 Dielectric for Lead-Free Assembly

Application of NiP Using PT Copper

▲ NiP Resistors on Inner Layer of DRAM Design

▲ Enlargement of Above Design

NiP Resistors

NiP Material Using PT Copper

Results of Lead-Free Assembly Simulation

SUBSTRATE	% ∆R AT	% ∆R AT	% ∆R AT	% ∆R AT	% ∆R AT	% ∆R AT	% ∆R AT	TEST METHOD	CONDITION
	1 CYCLE	2 CYCLE	5 CYCLE	10 CYCLE	15 CYCLE	20 CYCLE	25 CYCLE		
FR-4	-0.36	-0.47	-0.47					T260. 20 sec	no bake
Lead Free	-0.57	-0.58	-0.62	-0.54	-0.24	-0.13	-0.08	T288, 10 sec	5 hr bake
Lead Free	-0.27	-0.37	-0.46	-0.27	-0.16	0.17	0.26	T288, 10 sec	no bake
FR-4	-1.39	open						T288, 10 sec	5 hr bake
FR-4	-1.25	open						T288, 10 sec	no bake

Memory board, 10 layers with one layer of 22 ohm resistors, 23 mils x 10 mils. Built using Double Treat 1/2A50ohm NiP laminate. The FR-4 PCB used a standard multifunctional epoxy laminate. The "lead-free" PCB used a phenolic-cured laminate.

Testing per IPC-TM-650, Method 2.4.13.1, baking was performed at 125 dC.

Application of NiP Resistors Using TOC Copper in Microwave Applications

Enlargement of a four-up array 16-way power divider with 50 Ω /sq NiP resistors

Comparison of Various Copper Types of NiP Material in Microwave Applications

Comparison of Various Copper Types of NiP Material in Microwave Applications

Application of NiP Resistors with DFF Copper Embedded Resistor/Capacitor Core

Copyright © 2007 Ohmega ® / Farad Flex ®

EMBEDDED RESISTANCE-CAPACITANCE TECHNOLOGY

Ohmega[®]/*FaradFlex*[®] is a combined product of the OhmegaPly[®] thin film resistive-conductive material (RCM) laminated to a *FaradFlex*[®] dielectric material and subtractively processed to produce embedded RC Networks.

- Combined Laminate Product.
- Resistance and Capacitance in the same core.
- Developed to accommodate high density designs.
- Embedded Resistor and Capacitor Networks
- Improved signal integrity by better impedance matching.
- Improved signal to noise ratios.
- Standard PCB Subtractive Processing.
- Greater cost effectiveness than separate BR and BC cores.

4031 Elenda Street Culver City, California 90232-3799 Phone: (310)559-4400 Fax: (310)837-5268 Web: http://www.ohmega.com

Ohmega[®] and OhmegaPly[®] are registered trademarks of Ohmega Technologies FaradFlex[®] is a registered trademark of Oak-Mitsui Technologies. 80 1st Street Hoosick Falls, NY 12090 Phone: (518)686-4961 Fax: (518)686-8080 Web: <u>http://www.faradflex.co</u>

Application of NiP Resistors Using DFF Copper

SPECIFICATIONS AND PROPERTIES for 1R25 / BC24

1-Capacitor Layer Properties

Properties	Ohmega/FaradFlex Core	Remarks and Conditions		
Copper Weight, µm	35	Nominal		
Sheet Resistivity, ohms / square	25	Nominal		
Dielectric Thickness, µm	24 Nominal			
Cp@ 1MHz, nF/in2(pF/cm2)	1.0 (155)	IPC-TM 650 2.5.5.3		
Dk @1MHz	4.4	IPC-TM 650 2.5.5.3		
Loss Tangent @ 1MHz	0.015	IPC-TM 650 2.5.5.3		
Peel Strength, Ibs/in	5.0	IPC-TM 650 2.4.9		
Dielectric Strength, kV/mil	5.3	IPC-TM 650 2.5.6.3		
Tensile Strength, Mpa(kpsi)	152(22.0)	ASTM D-882 A		
Elongation, %	18.5	ASTM D-882 A		

2-NiP Resistor Properties

Synergistic Effect!

Properties	Ohmega/FaradFlex	Ohmega Core	Remarks and Conditions		
	Core	FK-4 (COIIII OI)			
Sheet Resistivities (ohm/square)	25	25	Nominal		
Material Tolerance	+/-5%	+/-5 %			
			MIL-STD-202-1081		
Load Life Cycling Test			Ambient Temp: 70C		
Resistor Size: 0.500" X 0.050"			On Cycle: 1.5 hrs		
Loaded: (A R%) @ 150mW	1.6	<5	Off Cycle: 1.5 hrs		
Unloaded: (Δ R%)	1.2		Length Of Test: 10000 hrs		
			MIL-STD-202-308		
Current Noise Index in dB	<-23	<-15	Voltage Applied: 5.6 Volts		
			ML-STD-202-103A		
			Temp: 40 °C		
Humidity Test (Δ R%)	0.5	0.5	Relative Humidity: 95%		
			Time: 240 hrs		
			MIL-STD-202-304		
Characteristic (RTC) PPM/°C	-6.0	50	Hot Cycle: 25°, 50°,75° 125°C		
			Cold Cycle: 25°, 0°,-25°, -55°C		
			MIL-STD-202-107B		
Thermal Shock (Δ R%)	0.2	-0.5	No of Cycles: 25		
			Hot Cycle Temp: 125 °C		
			Cold Cycle Temp: -65 °C		
Solder Float (A R%)	/	/	MIL-STD-202-210D		
After 1 Cycle	-0.4	0.5	Temp: 260°C		
After 5 cycles	-0.6 🖌		Immersion: 20 Second		
Power Density (mW/mil ²)	0.45	0.15	Step-up Power Test		
derated at 50%			Resistor Size: 0.020" X 0.035"		

Ohmega[®]/*FaradFlex*[®] Material Availability

OhmegaPly [®] Sheet	FaradFlex [®] Products						
Resistivities (Ohm/square)	BC24	BC16	BC12	BC8	BC12TM	BC16T	
10	Х	Х	0	0	0	0	
25	X	X	X	X	0	0	
50	X	X	X	X	0	0	
100	Х	Х	0	0	0	0	
250	X	X	0	0	0	0	
Cp @ 1MHz/1GHz (pF/cm ²)	180/160	250/225	300/270	480/430	700/600	1700/1450	

X- Currently Available

O- Available 2008

- Embedded Thin-Film NiP resistors on advanced dielectric materials require modifications of the substrate topography.
- This paper has shown the successful implementation of these modifications.